
366 

Acta Cryst. (1990). A46, 366-371 

Electron Virtual Inelastic Scattering in the Multislice Scheme 

BY Z. L. WANG* 

Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA 

(Received 19 July 1989; accepted 5 December 1989) 

Abstract 

A multislice theory has been developed for including 
the virtual inelastic scattering in dynamical calcula- 
tions of high-energy electron diffraction. The effects 
on elastic waves of all inelastic processes, such as 
single-electron excitation, plasmon excitation and 
phonon scattering, can be characterized by a complex 
correction potential. Its real part describes the virtual 
inelastic process and its imaginary part represents the 
inelastic absorption effect. This potential is directly 
related to the generalized dielectric response function 
of the crystal. 

1. Introduction 

The early theory of simulating electron inelastic scat- 
tering in a crystal was described by Yoshioka (1957). 
Based on quantum mechanical theory, he derived a 
set of coupled Schrrdinger equations by considering 
all the possible inelastic transitions between the 
ground state and the excited states of the crystal. 
These equations, in principle, govern the wave 
behavior of electrons, but it is extremely difficult to 
solve them even numerically. 

The first application of Yoshioka's theory was to 
consider the effects of inelastic scattering on the elas- 
tic scattered wave. In electron diffraction, an electron 
can lose a certain amount of energy (inelastic scatter- 
ing) and then regain the same amount of energy to 
become an 'elastic' electron again. This process is the 
so-called virtual inelastic scattering initiated by 
Yoshioka (1957). Besides the crystal potential due to 
atomic arrangement, there will be a real addition to 
the crystal potential from virtual inelastic scattering 
as well as the imaginary absorption correction. 
Yoshioka (1957) gave an expression for this correc- 
tion potential in the Bloch wave scheme. The cor- 
rections due to single-electron inelastic scattering 
were calculated using the Thomas-Fermi atomic 
model (Yoshioka, 1957) and atomic wave functions 
(Whelan, 1965). This correction has also been calcu- 
lated by Humphreys & Hirsch (1968) for different 
inelastic excitation processes. The contribution due 
to plasmon excitation was investigated by Radi (1970) 
and Yoshioka & Kainuma (1962). 
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Several methods have been developed to solve 
Yoshioka's equations in order to investigate the 
inelastic scattering behavior of the electrons in a 
crystal. Based on the Bloch wave approach under 
small-angle approximation, Howie (1963) gave some 
analytical solution for phonon excitations under some 
simplified conditions. This Bloch wave approach is 
usually limited by the assumption of periodic struc- 
tures, which gives the difficulty of approaching gen- 
eral crystal defects. Serneels, Haentjens & Gevers 
(1980) have proposed an iteration method for solving 
these coupled equations based on the Bloch wave 
theory. However, this method may be limited by the 
convergence of the iteration. 

Recently, Wang (1989) has proposed a generalized 
multislice method for solving Yoshioka's coupling 
equations. This approach can easily introduce a non- 
periodic structure in the calculation and considers all 
the possible transitions among the excited states. This 
theory has been applied to describe the thermal 
diffuse scattering in simulating high-angle annular- 
dark-field scanning transmission electron microscopy 
(STEM) lattice images (Wang & Cowley, 1990a, b). 
In practice, however, it is difficult to calculate all the 
inelastic waves individually because a large number 
of excited states are always involved. This makes it 
almost impossible to estimate the contribution of 
virtual inelastic scattering to the elastic wave. There- 
fore, it is desirable to seek an approximate method 
which can take into account the effects of virtual 
inelastic processes without knowing each individual 
inelastic component during the scattering. This is 
useful in the quantitative simulation of elastic electron 
images in high-resolution electron microscopy 
(HREM), especially when an energy filter is used. 
This is the purpose of the present paper. 

2. Virtual inelastic process in the multislice scheme 

For the convenience of theoretical analysis, it would 
be helpful to review the coupling equations derived 
by Yoshioka (1957) and the multislice solution given 
by Wang (1989). If one considers the interaction of 
an incident electron with a crystal, the Schr/Sdinger 
equation of the system (the electron and the crystal) 
is 

[-(h2/2mo)V2+ nc+ H']~= EC19, (1) 
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where - ( h 2 / 2 m o ) V  2 is thekinet ic  energy of the elec- 
tron, H~ is the crystal Hamiltonian and H '  describes 
the interaction between the electron and the solid. 
q~(r, r ~ , . . . ,  rM) is the wave function of the system, 
depending on r, the coordinates of the incident elec- 
tron, and on r ~ , . . . ,  rM the coordinates of the elec- 
trons and ions of the crystal. Neglecting exchange 
effects one can write 

4 ) ( r , r , , . . . , r M ) = E  a , ( r , , . . . , r M ) ~ , , ( r ) ,  (2) 
?1 

Cohere a,  is the wave function of the crystal in its nth 
excited state of energy e, so that 

H~a,, = e,,a,,. (3) 

~o in (2) describes the elastic scattered wave of energy 
Eo = E, and ~ .  describes the inelastically scattered 
wave of energy E,, = E - e,,  with n = 1, 2 , . . .  m. Sub- 
stituting (2) and (3) into (1), multiplying by a* 
integrating over the coordinates r ~ , . . . ,  rM, we have 

(V2+ k2) ~o = 2 (2mo/h2)H~om(r)attm, (4a) 
m 

(V2+ kE)qt, = E  (2mo/h2)H' , , ( r )rF, , ,  (4b) 
m 

where 

and 

k 2 = ( 2 m o / h 2 ) E , ,  (4c) 

H ~ m = S a * H ' a m d r , , . . . , d r M .  (4d) 

These are Yoshioka's coupling equations for inelas- 
tic scattering. By assuming ~ = exp ( ik . .  r)~o., Wang 
(1989) has shown that the waves ~p. going into a 
crystal slice at z =Zo and those coming out of the 
slice at z = z are related by 

) ~oo(b , z) 
¢,~(b, z) 

~¢,.,(b, z) 

l{Po(b_bo, AZ) 0 ... 0 ) 
=Sdbo, 0. Pl(b-bo,. Az) ". O. 

0 0 ... P,,(b-'bo, Az) 

i h~o(b~,az) h~t(b?,Zlz) ... h~,~(b.o,Z~z) xexp 

-~V \h-o(bo, aZ ) h-dbo, Az)... h',.(bo, az ) / J  

[ ~°(b°' Zo)\ 
x (q't(b.°' z°) } (5a) 

\~0m(bo, Zo) / 

where 

i ! him = H,m(b,  z') dz', (5b) 
ZO 

b = (x, y) and bo = (Xo, Yo). P, is defined as a propaga- 
tion function, 

P,(b,  zaz )=(1 / iA ,Az )exp( i~rb2 / ) t ,Az ) .  (5c) 

)t, is the wavelength of the electron with energy 
E,. Equation (5) is the multislice solution of 
Yoshioka's coupling equations. This solution can be 
conveniently applied to different inelastic processes, 
such as plasmon diffuse scattering and thermal diffuse 
scattering (Wang, 1989). It can be proved that the 
total intensity Y~.moj'dbl~o.12 before and after 
penetrating through a crystal slice is conserved (see 
Appendix A). For In~ml~lH~.l, H ~ o -  H~,-'- . . .  = 

H ' m  and (rlH, m I < 1 for n • m, with cr = ( 1 / h v )  then 
(5) can be written as (6) under the first-order approxi- 
mation. 

(~oq~0(b. z)) ~,(.b. z) 

re(b, z) 

t {exp (-itrh'oo)[~°o(b, zo)- itr n~o h~)nq~.(b, zo)]} * Po I 
= {exp (- itrh[l)[tpl(b, z o) -itr .~#1 h~nq~(b, Zo)]} * Pl 

{exp (-io'h',.)[~Om(b, Zo)-io" ~#,. h',..~o~(b. Zo)]} * P,.] 
(6) 

where * indicates convolution. 
In (6), for the elastic scattered wave q~o, the first 

term is the phase grating result of the crystal slice, 
which is the elastic penetration of the incident elastic 
wave. The terms containing h~), are the 'transitions' 
of the electrons from the excited states to the ground 
state, which is the result of virtual inelastic scattering. 
It is obvious that the generated virtual inelastic scat- 
tering from each slice depends on the incident inelas- 
tic waves. In other words, the contribution of virtual 
inelastic scattering to the elastic scattered wave 
depends strongly on the incident inelastic waves, 
which is related to the 'history' of electron scattering. 
The multislice solution (6) cannot be easily performed 
in practical calculation, because a real inelastic scat- 
tering can involve many excited states of different 
energy and different momentum, such as valence exci- 
tations. It is necessary to look for an approximate 
solution in the multislice scheme for q~o if one is 
interested only in the elastic scattered wave. This is 
the goal of the following work. 

We start firstly from the original Schriidinger 
equations (4). By neglecting the transitions from the 
other excited states to the nth state and keeping only 
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the transition from the ground state, an integral sol- 
ution of (4b) can be written as (Yoshioka, 1957) 

gt,,(r) -~ - (2mo/4~h 2) ~ (exp ik, lr-r'[/lr-r'l) 

x H'o(r ') g%(r') dr'. (7) 

Insert (7) into (4a), then the wave equation for the 
elastic wave is 

[V 2 + k2-(2mo/h2)H~o(r)] ~o(r) 

+(2mo/ h2) ~ A(r,r')~o(r') dr'=O, (8a) 

where 

A( r , r ' )=  ~ (mo/21rh2)H~,(r)H'o(r ') 
n ~ O  

x[exp (ik, lr-r'l)/lr-r'l]. (8b) 

It is interesting to note that the virtual inelastic 
processes introduce an extra term containing a 
core function A(r,r ')  in (Sa). By taking gto= 
exp ( ik , .  r)~oo, the integral solution of (Sa) is 

~oo(r) = 1-(2mo/47rti z) ~ F ( r - r ' ,  ko){H~o(r')~oo(r') 

-~  A(r', r")~oo(r") dr"} dr', (9a) 

with 

F ( r - r ' ,  k , ) =  (exp {i[k, I r - r '  [ - k , .  ( r -  r ' ) ]}/ l r -  r'['). 

(9b) 

General speaking, it is difficult to solve (9a), and 
certain approximations have to be made for different 
cases. When the high-energy electron scattering 
satisfies the following conditions: (1) a2<  1, a is the 
scattering angle, and (2) Jr-r ' l-~ z -  z', thus 

k~[r - r ' ] -  k , .  (r - r') -~ k.[lb - b'12/2(z - z')] 

then (9a) becomes 

~po(r) = 1 - ( i / t i v )  ~ Po(b-b ' ,  z - z ' ) {  H~o(r') ¢o(r') 

-~  A(r', r")~po(r") dr"} dr', (10) 

where v is the velocity of the electron and Po is the 
propagation function defined in (5c). By defining a 
crystal potential 

U= H'oo/e ( l l a )  

and 

U'(r, r') = -~ Po(b-b", z -z")  

xA(r",r ')dr"/ePo(b-b' ,z-z ') ,  ( l lb )  

switching the variables r" and r' in the last term of 
(10), we have 

~oo(r) = 1-( ie /  tiv) ~ Po(b-b', z -  z') 

x { U(r') + U'(r, r')}~oo(r') dr'. (12) 

In order to find the multislice solution of (12), we 
need to derive a relationship between the wave, 

~oo(b, Zo), going into a crystal slice of thickness (z - Zo) 
and that, ~oo(b, z), after being scattered by the crystal 
slice. From (12), if we look particularly at the wave 
at z =z, then 

z ' ~ z  

q~o(b,z)=l.+(-ie/hv)~ ~ Po(b-b ' , z -z ' )  
z ' =  --oo 

× { U(b', z ' )+ U'(b,z,b',z')} 

x ~oo(b', z') db' dz' 

~"~ ~o z") =l+(-ie/hv)I P o ( b - b " ,  z - 

× { U(b", z") + U'(b, z, b", z")} 

x ~po(b", z") db" dz" 
z ' ~ z  

+(-ie/t iv) ~ ~ Po(b-b ' , z -z ' )  
z ' = z  0 

× { U(b', z ' )+ U'(b,z,b',z')} 

x ~po(b', z') db' dz'. (13) 

From the following properties (Ishizuka & Uyeda, 
1977): 

eo(b-bo, z-zo)dbo= 1 (14a) 
and 

Po(b - b", z - z") 

=~ Po(b-bo, z-zo)Po(bo-b",Zo-Z") dbo, (14b) 

(13) can be rewritten as 

co(b, z) = ~ Po(b- bo, z -  Zo)q~o(bo, Zo) dbo 
Z ' = 7  

+(-ie /hv)~ ~ Po(b-b ' , z -z ' )  
z ' = z  0 

x{U(b' ,  z ' )+ U'(b,z,b',z')} 

x ~oo(b', z') db' dz'. (15) 

The first term in (15) indicates the expanding 
propagation of the incident wave through the 
'vacuum' for a distance z-Zo;  the second term is the 
scattering results of the atoms within the slice. In 
general, (15) cannot be solved accurately, because 
the interaction term U' is involved. To find the first- 
order solution, we assume that (15) can be expanded 
in the powers of (- ie/ tw),  

~oo(b, z) = ~ Po(b- bo, z -  Zo)~oo(bo, Zo) 
GO 

x Y~ [(-ie/tW)LfL(b,z, bo, zo)]dbo. (16) 
L = 0  

Put (16) into (15) and consider that the crystal slice 
is so thin that the variation of U' in the range (z - Zo) 
is small. By comparing the coefficients of ( - ie /hv)  L, 
one has 

f o = l  (17a) 
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and for L_> 1 

j" Po(b- bo, z -  Zo) oo(bo, Zo)A(b, z, bo, Zo) dbo 
z t =  z 

=~ ~ Po(b-b',z-z')[U(b',z')+U'(b,z,b',z') 
z'= z 0 

x ~ Po(b'-  bo, z ' -  Zo)q~o(bo, Zo) 

x fL_l(b', z', bo, Zo)] dbo db' dz'. (17b) 

Integrating over b' using the method of stationary 
phase (Ishizuka & Uyeda, 1977) and assuming that 
U, U' and fL vary slowly in the region of z - Zo, we 
have 

z'=z 
fz(b,z, bo, Az) = ~ [U(b',z')+U'(b,z,b',z')] 

Z'-~ Z 0 

xft.-l(b', z', bo, Zo) dz', (18a) 

where b '=  [ ( z ' -  zo)b+ ( z -  z')bo/z- Zo]. Using the 
non-deflection approximation, b '=bo, (18a) can be 
written approximately as 

Z t = Z  

A(b,z, bo, aZ)= f [U(bo, z')+V'(bo, zo, bo, z')] 
Z'= Z 0 

×fL-,(bo, z',bo, zo) dz'. (18b) 

It can be proved that the solution of (18b) is (see 
Appendix B) 

z'_z [U(bo, z ')+ U'(bo, zo, bo, z')]dz' 
A - -  V., z, zo 

(19) 

Then the solution of (16) is 

q~o(b, z)----- ~ Po(b- bo, z -  Zo) 
I zO=z 

xexp -itre ~ [U(bo, z') 
z'= z 0 

U'(bo, Zo, bo, z')] dz']  q~o(bo, Zo) dbo + 

= exp -ioe I [U(b,z ' )  
z'~ z 0 

+ U'(b, Zo, b, z')] dz'] ~o(b, Zo)} * P o, 

(20) 

where * indicates a convolution operator. Equation 
(20) is basically the same as the original multislice 
theory (Cowley & Moodie, 1957) except that an extra 
potential U' is added. As expected, the effect of virtual 
inelastic processes on the elastic wave is equivalent 
to adding a complex correction potential U' to the 
crystal potential U, whose real part describes the 
perturbation of virtual inelastic processes and whose 
imaginary part represents the inelastic absorption 
effect. 

3. Deriving the correction potential of virtual inelastic 
scattering 

It has been shown that the effect of virtual inelastic 
processes on elastic waves can be characterized 
approximately by a correction potential, which is 
defined by ( l lb) .  Putting (Sb) into ( l lb) ,  we obtain 

U'(r,r')=-~ Po(b-b", z-z")  ~. (mo/27rh2)H~,(r ") 
n#O 

x H'o(r ')[exp (ik, lr ' -r"J)/Jr '-r"l]  

x dr"/ePo(b - b', z - z'). (21) 

For high-energy electrons, ko = k, (i.e. Po ~- P~) is 
always satisfied, using the same procedure as in (9) 
and (10) and assuming that the conditions (1) small- 
angle scattering and (2) Ir'-r"l-~ Iz '-  z"l are satisfied, 
then by use of the propagation function defined in 
(5c), (21) can be changed to 

U'(r, r')= -(  i/ hv) ~ ~ Po(b-b", z -  z") 
l f I t  f t x Po(b"-b ,  z " -  z') 2 Ho,(r )H,o(r ) 

n ~ 0  

x exp [ ik , .  ( r ' - r")]  dr"/ePo(b- b', z -  z'). 

(22) 

Integrating over b" in (22) using the method of 
stationary phase, we have 

where 

U'(r,r')=-(i/hve) ~ Z H~,(r")H'o(r') 
n ~ O  

x exp [ ik . .  ( r ' -  r")] dz", (23a) 

b"=[(z"-z')b+(z-z")b'/(z-z')].  (23b) 

In general, H '  can be written as 

H., . (r)<m[ 1 e2 Zke2 ~[n>, (24) 

and 

(1/[r-rjl)=(1/2cr2) ~ (dq/q2)exp iq.(r-D), (25) 

where r~ and Rk are the positions of the j th electron 
and the kth nucleus respectively. Using (24) and (25), 
integrating over z" in (23a) and through some algebra, 
one obtains 

i e 3 f 
U ' ( r , r ' )=  fi-v 32¢rSeg (dq/q2) exp(iq'r') 

x ~ (dq'/q '2) exp ( - i q ' .  r')S(q, q ' ) ( z -  z') 

x 8[ (q-ko) .  ( r -  r')], (26) 

where S is the so-called mixed dynamic form factor 
and is defined as 

S(q,q') = ~ F0.(q)F.o(-q'), (27a) 
n # 0  
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where 

Fo,,(q)=(nlY. exp(-iq.rj)lO). (27b) 
J 

The dynamic form factor S is connected with the 
generalized dielectric function of the solid by (Kohl 
& Rose, 1985) 

o o  

S(q, q ')= j" S(q, q', to) dw, (28a) 
- -Of)  

S(q, q', w)= iheoV/{Z~reZ[1-exp (-13hw)]} 

x[q2/eqq,(w)-q'2/e~q(W)], (28b) 

where 13 = (1/ksT), T is the temperature for the sys- 
tem and V is its volume. The dielectric function e 
describes the response of the system as a function of 
total electric potential ~pt°t(r, t) = ~peXt(r, t) + ~pind(r, t), 
where q~ext and ~ind are the external applied and the 
induced potential respectively, e is defined (Adler, 
1962) by 

~pext(to) = Y. eqq,(tO) ~t°t(to). (29) 
q' 

Put (28) into (26), we have 

U'(r, r ' )=-(eV/647r6eo v) ~ (dq/q2) ~ (dq'/q,2) 

x exp [ i ( q - q ' ) .  r ']lz- z'[ 
x 6[ (q-ko) .  ( r -  r')] 

o o  

x ~ dto{1/[1-exp(-13hto)]} 
- -OO 

_r2. E~ - x[q2/eqq,(to)-q / q,q(tO)]. (30) 

This is the final expression for the correction poten- 
tial. It is apparent that U' is a complex function with 
its real part associated with R e ( - 1 / e )  and its 
imaginary part related to Im ( - l / e ) .  The latter is the 
energy-loss function of the solid and is responsible 
for the absorption effect. Now apply (30) to the U' 
which appears in (20): 

U'(bo, Zo, bo, z ' )=  -(eV/647r6eoV) ~ (dq/q2) 

x ~ (dq'/q,2) exp [ i ( q - q ' ) .  bo 

+i(qz-q')z']6(qz-k~z) 
i x )  

x J dw{1/[1-exp(-/3hw)]} 
- -CO 

x[q2/eqq,(w)-q'2/eq,q(tO)]. (31) 

The .6 function characterizes the conservation of 
momentum in the z direction. 

Several assumptions have been made in the deriva- 
tion of all the above equations. Firstly, the crystal 
potential U and correction potential U' are assumed 
to vary slowly in the range of Az--z-Zo. This is a 
good approximation if Az approaches zero. In prac- 
tical image simulation for high-energy electrons, the 

slice thickness is usually taken as 1-3/~, which gives 
reasonably good accuracy (Ishizuka & Uyeda, 1977). 
Secondly, the energy loss of an electron is taken so 
small that Po = P,. This is usually satisfied because 
most of the electrons will loose an energy of less than 
a few hundred electron volts, which is much smaller 
than the kinetic energy of the electrons (100 keV). 
Finally, small-angle scattering is assumed. This is a 
good treatment especially for high-energy electrons. 

4. Concluding remarks 

A modified multislice approach for including virtual 
inelastic scattering in the dynamic calculations of 
high-energy electrons has been introduced. The 
effects of virtual inelastic processes on the elastic 
wave can be characterized by a correction potential, 
its real part indicates the virtual inelastic process and 
its imaginary part represents the inelastic absorption 
effect. This potential is derived in real space and is 
connected to the generalized dielectric function of 
the system. It is feasible, in principle, to simulate the 
energy-filtered elastic image and diffraction pattern 
quantitatively using this multislice theory. The total 
effects of inelastic processes, plasmon excitation, 
single electron excitation and phonon excitation, 
should be comprehensively included in the general- 
ized dielectric function of the system. In other words, 
these effects should be contained in the newly intro- 
duced correction potential. 

The author thanks the Master and the Fellows of 
Emmanuel College, University of Cambridge, for the 
award of a Research Fellowship. 

APPENDIX A 

Conservation of total scattering intensity governed 
by (5a) 

From (5a), we define a transition matrix as 

[ h o bo, h , bo, ... az) \ 
T(bo, Az)=lh;o(bo. ,Az) h{'(b.o, AZ) h;m(b.o, Az) I I I 

\h'm0/b0,az) h',,,,Cb0,az) h',..,(b0,az)] 
(Zl)  

It is important to note that matrix T has the 
property 

T*= T, (A2) 

where * means an operation of Hermitian conjugate 
(i.e. complex-conjugate plus transpose). Also 

j" db P , (b-bo ,  Az)P*(b-b~, Az)= B(bl-  bo). (A3) 

Then the total intensity after penetrating a crystal 
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slice can be calculated according to (5a), 

~. J I,t,,,(b, z)l = db 
n 

¢~o(b, z) X 
=Idb[**O,, z)**(b, z)... q,*(b, z)] ~'(~' z)~ 

~q%(b, z)] 

=~ dbl[q~o*(b ! , Zo)~o*(bl, Zo)... q~(bl, Zo)] 

X exp [(i/by) Tt(bt, Az)] 

/ Po*(b-ob,, az) 

xJdb / i 0 

Po(b- bo, Az) 

\~m(bo, Zo)/ 

% 
0 ... 0 \ 

J 
P*(b-b , ,  Az) ... 0 

• 

o . . . .  e*(b-h,az 
% 

0 ... 0 

Pl(b-bo, az) "" 0 

0 ... Pm(b-bo, AZ) 

(A4) 

Using property (A3) and (A1), integrating over b 
first, then over hi, one obtains from (A4) 

2db= jl,v,.(bo,zo)l  dbo. (A5) 
I'l ?1 

That is, the total intensity (elastic plus inelastic) is 
conserved before and after being scattering by a crys- 
tal slice. 

A P P E N D I X  B 

Proof of  (19) 

M a t h e m a t i c a l  i n d u c t i o n  is used  to p rove  (19). We 
first cons ide r  f~. F r o m  (18b) ,  

z°.~. z 

f~(b,z, bo, aZ)"-" .[' [U(bo, z') 
Z °-~- Z 0 

+ U'(bo, Zo, bo, z')] dz'. (B1) 

Now it is assumed that the solution offL is (B3), 

fL- - (1 /L , ) l  z'SZ [ U(bo, z ') 
~. Z '=  Z 0 

+ U'(bo, zo, bo, z')]dz' (B2) 

According to (18 b), one has 
z I = z 

fL+,(b,z, bo, Az ) "  j [U(bo, z')+ U'(bo, zo, bo, z')] 
Z~-~Z0 

xfL(bo, z', bo, Zo) dz', 
Z~=Z 

=( l /L ! )  ~ dz'[U(bo, z') 
Z~ ~ZO 

+ U'(bo, Zo, bo, z')] 
I Zu=Z 

x I dz"[U(bo, z") 
Z°'= Z 0 

+ U'(bo,  zo, bo, z")] • (B3) 

I¢ Integrate over z ,  we have 
I Z ' = Z  

fL+,=[1/(L+ 1)!1 I dz'[U(bo, z') 
z ~___ z 0 

+ U'(bo, Zo, bo, z')]} L+,. (B4) 

Thus, (19) is proved by mathematical induction. 
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